Geometry
Chapter 12

Geometry 12

- This Slideshow was developed to accompany the textbook
\diamond Larson Geometry
\diamond By Larson, R., Boswell, L., Kanold, T. D., \& Stiff, L.
$\diamond 2011$ Holt McDougal
- Some examples and diagrams are taken from the textbook.

12:1 EXPLORE SOLIDS

Polyhedron
\diamond Solid with polygonal sides
\diamond Flat sides

- Face
\diamond Side
- Edge
\diamond Line segment
- Vertex
\diamond Corner

12.1 EXPLORE SOLIDS

- Prism
\diamond Polyhedron with two congruent surfaces on parallel planes (the 2 ends (bases) are the same)
\diamond Named by bases (i.e. rectangular prism, triangular prism)

- Cylinder
\checkmark Solid with congruent circular bases on parallel planes (not a polyhedron)

12.1 EXPLORE SOLIDS

- Pyramid \rightarrow polyhedron with

 all but one face intersecting in one point- Cone \rightarrow circular base with the other surface meeting in a point (kind of like a pyramid)
- Sphere \rightarrow all the points that are a given distance from the center

12:1 EXPLORE SOLIDS

Euler's Theorem

The number of faces (F), vertices (V), and edges (E) of a polyhedron are related by

$$
F+V=E+2
$$

- Convex
\diamond Any two points can be connected with a segm/nt completely inside the polyhedron
- Concave
\diamond Not convex
\diamond Has a "cave"

12:1 EXPLORE SOLIDS

- Tell whether the solid is a polyhedron. If it is, name the polyhedron and find the number of faces, vertices, and edges and describe as convex or concave

Polyhedron; Square Pyramid; 5 faces, 5 vertices, 8 edges; convex

Not a Polyhedron

Polyhedron; Triangular Prism; 5 faces, 6 vertices, 9 edges; convex

12:1 EXPLORE SOLIDS

- Cross Section

勺Imagine slicing a very thin slice of the solid
\rangle The cross section is the
2-D shape of the thin slice

12:1 EXPLORE SOLIDS

- Find the number of faces, vertices, and edges of a regular dodecahedron. Check with Euler's Theorem.
- Describe the cross section.

Triangle

Circle

Hexagon

ANSWERS AND QUIZ

- 12.1 Answers

- 12.1 Homework Quiz

- Surface area = sum of the areas of each surface of the solid In order to calculate surface area it is sometimes easier to draw all the surfaces

Some sports relie on having very little friction. In biking for example, the smaller the surface area of the tires, the less friction there is. And thus the faster the rider can go.
\rightarrow Draw the top triangle first (for some triangles you may have to count a horizontal space as 2)

Nets

- Imagine cutting the three dimensional figure along the
 edges and folding it out.
- Start by drawing one surface, then visualize unfolding the solid.
- To find the surface area, add up the area of each of the surfaces of the net.

Parts of a right prism

- Bases \rightarrow parallel congruent surfaces (the ends)
- Lateral faces \rightarrow the other faces (they are parallelograms)
- Lateral edges \rightarrow intersections of the lateral faces (they are parallel)
- Altitude \rightarrow segment perpendicular planes containing the two bases with an endpoint on each plane
- Height \rightarrow length of the altitude

Lateral

Altitude

Edge

CYLINDERS

- Right prism
\diamond Prism where the lateral edges are altitudes
- Oblique prism
\diamond Prism that isn't a right prism

CYLINDERS

Lateral Area (L) of Prisms

- Area of the Lateral Faces
- L = Ph
$\diamond \mathrm{L}=$ Lateral Area
$\diamond P=$ Perimeter of base
$\diamond h=$ Height

You can find the surface area by adding up the areas of each surface, but if you could use a formula, it would be quicker

All the lateral surfaces are rectangles
Area $=\mathrm{bh}$
Add up the areas $\mathrm{L}=\mathrm{ah}+\mathrm{bh}+\mathrm{ch}+\ldots+\mathrm{dh}$
$\mathrm{L}=(\mathrm{a}+\mathrm{b}+\mathrm{c}+\ldots+\mathrm{d}) \mathrm{h}$
Perimeter of base $=a+b+c+\ldots+d$
$\mathrm{L}=\mathrm{Ph}$

CYLINDERS

- Base Area (B)

SIn a prism, both bases are congruent, so you only need to find the area of one base and multiply by two

Surface Area of a Right Prism

$$
S=2 B+P h
$$

Where $\mathrm{S}=$ surface area, $\mathrm{B}=$ base area, $\mathrm{P}=$ perimeter of base, $\mathrm{h}=$ height of prism

CYLINDERS

- Draw a net for a triangular prism.
- Find the lateral area and surface area of a right rectangular prism with height 7 inches, length 3 inches, and width 4 inches.

〈

$$
\begin{gathered}
P=2(3)+2(4)=14 \\
L=(14)(7)=98 \\
B=3 \cdot 4=12 \\
A=2(12)+14(7)=122
\end{gathered}
$$

CYLINDERS

- Cylinders are the same as prisms except the bases are circles
\diamond Lateral Area $=\mathrm{L}=2 \pi \mathrm{rh}$
Surface Area of a Right Cylinder

$$
S=2 \pi r^{2}+2 \pi r h
$$

Where $S=$ surface area, $r=$ radius of base, $\mathrm{h}=$ height of prism

The surface area of a right cylinder is $100 \mathrm{~cm}^{2}$. If the height is 5 cm , find the radius of the base.

- Example: Draw a net for the cylinder and find its surface area.

2
5

- 806 \#2-28 even, 31-37 all = 21

$$
\begin{gathered}
100=2 \pi r^{2}+2 \pi r(5) \\
100=2 \pi r^{2}+10 \pi r \\
0=2 \pi r^{2}+10 \pi r-100 \\
0=r^{2}+5 r-15.915 \\
r=\frac{-5 \pm \sqrt{5^{2}-4(1)(-15.915)}}{2(1)} \\
r=\frac{-5 \pm \sqrt{88.662}}{2} \\
r=2.2,-7.2
\end{gathered}
$$

Only 2.2 makes sense because the radius must be positive

$$
\begin{aligned}
& S=2 \pi 2^{2}+2 \pi(2)(5) \\
& S=8 \pi+20 \pi=28 \pi
\end{aligned}
$$

ANSWERS AND QUIZ

- 12.2 Answers

- 12.2 Homework Quiz

- Regular pyramid \rightarrow base is a regular polygon and the vertex is directly above the center of the base
\diamond In a regular pyramid, all the lateral faces are congruent isosceles triangles
\checkmark The height of each lateral face is called the slant height (ℓ)
- Lateral Area $\rightarrow \mathrm{L}=1 / 2 \mathrm{Pl}$

Surface Area of a Regular Pyramid

$$
S=B+\frac{1}{2} P \ell
$$

Where $\mathrm{B}=$ base area, $\mathrm{P}=$ base perimeter, $\mathrm{l}=$ slant height

Lateral area is $1 / 2$ because the sides are triangles.

CONES

- Find the surface area of the regular pentagonal pyramid.

Base Area

$$
\begin{gathered}
B=\frac{1}{2} P a \\
B=\frac{1}{2}(5 \cdot 8)(5.5)=110 \\
\ell^{2}=5.5^{2}+4.8^{2} \\
\ell=7.3 \\
S=B+\frac{1}{2} P \ell \\
S=110+\frac{1}{2}(5 \cdot 8)(7.3)=256
\end{gathered}
$$

Cones

- Cones are just like pyramids except the base is a circle
- Lateral Area = π rl

Surface Area of a Right Cone

$$
S=\pi r^{2}+\pi r \ell
$$

Where $r=$ base radius, $\ell=$ slant height

- Example: The So-Good Ice Cream Company makes Cluster Cones. For packaging, they must cover each cone with paper. If the diameter of the top of each cone is 6 cm and its slant height is 15 cm , what is the area of the paper necessary to cover one cone?
- 814 \#2-32 even, 35-39 all = 21
- Extra Credit 817 \#2, 6 = +2

Looking for lateral area.

$$
L=\pi 3(15)=141.4 \mathrm{~cm}^{2}
$$

ANSWERS AND QUIZ

- 12.3 Answers

- 12.3 Homework Quiz

CYLINDERS

- Create a right prism using geometry cubes
- Count the lengths of the sides
- Count the number of cubes.
- Remember this to verify the formulas we are learning today.

Volume of a Prism

$$
V=B h
$$

Where $\mathrm{B}=$ base area, $\mathrm{h}=$ height of prism

Volume of a Cylinder

$$
V=\pi r^{2} h
$$

Where $\mathrm{r}=$ radius, $\mathrm{h}=$ height of cylinder

CYLINDERS

- Find the volume of the figure

Cut into two prisms
Top

$$
V=1(1)(1)=1
$$

Bottom

$$
V=3(1)(2)=6
$$

Total

$$
V=1+6=7
$$

Find the volume.

Base Area (front)
Find height of triangle

$$
\begin{gathered}
5^{2}+x^{2}=10^{2} \\
25+x^{2}=100 \\
x^{2}=75 \\
x=5 \sqrt{3}
\end{gathered}
$$

Area=triangle - square

$$
\begin{gathered}
B=\frac{1}{2}(10)(5 \sqrt{3})-3^{2} \\
B=25 \sqrt{3}-9 \approx 34.301
\end{gathered}
$$

Volume $=\mathrm{Bh}$

$$
V=(25 \sqrt{3}-9)(6)=150 \sqrt{s}-54 \approx 205.8
$$

Find volume of washers without holes: $V=\pi \frac{1 / 2}{2} 9=7.06858$
Find volume of hole: $\mathrm{V}=\pi(3 / 8)^{2} 9=3.97608$
Find volume of washers with holes: $7.06858-3.97608=3.09251$
Find volume of one washer: $3.09251 / 150=0.02 \mathrm{in}^{3}$

$$
\begin{gathered}
B=\frac{1}{2}(9)(5)=22.5 \mathrm{~m}^{2} \\
V=\left(22.5 \mathrm{~m}^{2}\right)(8 \mathrm{~m})=180 \mathrm{~m}^{3}
\end{gathered}
$$

ANSWERS AND QUIZ

- 12.4 Answers

- 12.4 Homework Quiz

CONES

- How much ice cream will fill an ice cream cone?
- How could you find out without filling it with ice cream?
- What will you measure?

Where $\mathrm{B}=$ base area, $\mathrm{h}=$ height of pyramid
Volume of a Cone

Where $\mathrm{r}=$ radius, $\mathrm{h}=$ height of cone

- Find the volume.

- 832 \#2-30 even, 34, 36, 40, 44-52 even $=23$
- Extra Credit 836 \#2, 4 = +2

$$
\begin{gathered}
B=\frac{1}{2} P a \\
\frac{1}{2} \text { central angle }=\frac{1}{2}\left(\frac{360}{6}\right)=30 \\
\tan 30=\frac{2}{a} \\
a=\frac{2}{\tan 30}=3.464 \\
B=\frac{1}{2}(4 \cdot 6)(3.464)=41.569 \\
V=\frac{1}{3}(41.569)(11)=152.42 \\
\tan 40=\frac{r}{5.8} \\
r=5.8 \cdot \tan 40 \stackrel{4.8668}{=} \\
V=\frac{1}{3} \pi 4.8668^{2} \cdot 5.8=143.86
\end{gathered}
$$

ANSWERS AND QUIZ

- 12.5 Answers

- 12.5 Homework Quiz

Terms

- Sphere \rightarrow all points equidistant from center
- Radius \rightarrow segment from center to surface
- Chord \rightarrow segment that connects two points on the sphere
- Diameter \rightarrow chord contains the center of the sphere
- Tangent \rightarrow line that intersects the sphere in exactly one place

SPHERES

- Intersections of plane and sphere
\diamond Point \rightarrow plane tangent to sphere
\diamond Circle \rightarrow plane not tangent to sphere
\diamond Great Circle \rightarrow plane goes through center of sphere (like equator)
\diamond Shortest distance between two points on sphere
\diamond Cuts sphere into two hemispheres

Surface Area of a Sphere

SPHERES

Where $r=$ radius

$$
S=4 \pi r^{2}
$$

- If you cut 4 circles into 8ths you can put them together to make a sphere
Volume of a Sphere

$$
V=\frac{4}{3} \pi r^{3}
$$

Where r = radius

You can think about cutting a sphere into many small regular square pyramids.
$V=1 / 3 \mathrm{Bh} \rightarrow$ the area of all the bases is $4 \pi \mathrm{r}^{2}$ and $\mathrm{h}=\mathrm{r}$

Volume of box: $4.5(1.5)(1.5)=10.125$
Volume of each ball: $\frac{4}{3} \pi .75^{3}=1.767$
Volume of empty space: $10.125-3(1.767)=4.824$

ANSWERS AND QUIZ

- 12.6 Answers

- 12.6 Homework Quiz

12.7 EXPLORE SIMILAR SOLIDS

- Russian Matryoshka dolls nest inside each other. Each doll is the same shape, only smaller. The dolls are similar solids.

12.7 EXPLORE SIMILAR SOLIDS

- Similar Solids

\diamond Solids with same shape but not necessarily the same size
\diamond The lengths of sides are proportional
\diamond The ratios of lengths is called the scale factor

12.7 EXPLORE SIMILAR SOLIDS

- Congruent Solids
\checkmark Similar solids with scale factor of 1:1
- Following four conditions must be true
\diamond Corresponding angles are congruent
\diamond Corresponding edges are congruent
\diamond Areas of corresponding faces are equal
\diamond The volumes are equal

12.7 EXPLORE SIMILAR SOLIDS

- Determine if the following pair of shapes are similar, congruent or neither.

Cone A: $r=4.3, h=12$, slant height $=14.3$
\checkmark Cone $B: r=8.6, h=25$, slant height $=26.4$
\diamond Ratios: $\frac{8.6}{4.3}=2, \frac{25}{12}=2.08$. Not proportional so neither
Right Cylinder A: $r=5.5$, height $=7.3$
Right Cylinder B: $r=5.5$, height $=7.3$
$\diamond 1: 1$ ratio so congruent.

12.7 EXPLORE SIMILAR SOLIDS

Similar Solids Theorem

If 2 solids are similar with a scale factor of a:b, then the areas have a ratio of $a^{2}: b^{2}$ and the volumes have a ratio of $a^{3}: b^{3}$

12.7 EXPLORE SIMIILAR SOLIDS

Cube C has a surface area of 216 square units and Cube D has a surface area of 600 square units. Find the scale factor of C to D.

- Find the edge length of C.
- Use the scale factor to find the volume of D.
- 850 \#2-26 even, 30-48 even $=23$
- Extra Credit 854 \#2, 4 = +2

Areas: $\frac{216}{600}=\frac{9}{25}=\frac{c^{2}}{d^{2}}$

$$
\frac{c}{d}=\frac{\sqrt{9}}{\sqrt{25}}=\frac{3}{5}
$$

Cube surface area: $S=6 c^{2}$
$216=6 c^{2}$
$36=c^{2}$
$c=6$

Volumes: $\frac{c^{3}}{d^{3}}=\frac{3^{3}}{5^{3}}$
$\frac{6^{3}}{d^{3}}=\frac{3^{3}}{5^{3}}$
$\frac{216}{d^{3}}=\frac{27}{125}$
$27 d^{3}=216(125)$
$d^{3}=1000$
volume of D is 1000

ANSWERS AND QUIZ

- 12.7 Answers

- 12.7 Homework Quiz

